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Abstract. A third order shock-capturing numerical scheme for three-dimensional special relativistic magnetohydrodynamics
(3-D RMHD) is presented and validated against several numerical tests. The simple and efficient central scheme described in
Paper I (Del Zanna & Bucciantini 2002) for relativistic hydrodynamics is here extended to the magnetic case by following the
strategies prescribed for classical MHD by Londrillo & Del Zanna (2000). The scheme completely avoids spectral decomposi-
tion into characteristic waves, which is computationally expensive and subject to many degenerate cases in the magnetic case,
while it makes use of a two-speed Riemann solver that just requires the knowledge of the two local fast magnetosonic velocities.
Moreover, the onset of spurious magnetic monopoles, which is a typical problem for multi-dimensional MHD upwind codes,
is prevented by properly taking into account the solenoidal constraint and the specific antisymmetric nature of the induction
equation. Finally, the extension to generalized orthogonal curvilinear coordinate systems is included, thus the scheme is ready
to incorporate general relativistic (GRMHD) effects.
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1. Introduction

Most of the astrophysical sources of high-energy radiation and
particles are believed to involve the presence of relativistic mo-
tions in magnetized plasmas. For example, the radio emission
from extra galactic jets (especially from terminal radio lobes)
or from plerion-like supernova remnants is due to synchrotron
radiation produced by relativistic electrons spiraling around
magnetic field lines, thus indicating the presence of significant
magnetic fields. Strong magnetic fields are supposed to play
an essential role in converting the energy of accreting mate-
rial around super-massive black holes at the center of Active
Galactic Nuclei (AGNs), into powerful relativistic jets escap-
ing along open field lines (Begelman et al. 1984). Similar phe-
nomena may be at work in the galactic compact X-ray sources
known as microquasars (Mirabel & Rodriguez 1994). These
processes involve the interaction of relativistic gasdynamic
flows and shocks with strong magnetic fields, which have
now started to be studied via computer simulations (see Meier
et al. 2001 for a review). Powerful relativistic blast shocks
should also be at the origin of the still mysterious gamma-ray
bursts (GRBs; Mészáros & Rees 1992). Moreover, the pres-
ence of magnetic fields has been invoked in various astrophys-
ical objects to explain both their morphology and evolution by
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applying simplified analytical models to basic plasma physics
effects (e.g. the magnetic pinch and kink instabilities may af-
fect the structure of both AGN and microquasar jets, and pos-
sibly also the overall shape of pulsar wind nebulae), although
a detailed study of the nonlinear and turbulent regimes is still
lacking.

Due to the extreme complexity and richness of the possi-
ble effects arising in relativistic plasma physics, there is a very
strong interest among the astrophysical community in the de-
velopment of computer codes for both relativistic hydrodynam-
ics (RHD) and magnetohydrodynamics (RMHD), since in most
cases only numerical simulations are able to cope with the evo-
lution of such phenomena. After some early attempts based on
non-conservative schemes that handled shocks with the aid of
large artificial viscosity and resistivity, it is only during the
last decade that conservative shock-capturing Godunov-type
numerical codes, already successfully applied to gasdynamic
problems, have started to be applied to RHD too, achieving
both high accuracy in smooth regions of the simulated flow
and sharp discontinuous profiles at shocks (e.g. Marquina et al.
1992; Schneider et al. 1993; Balsara 1994; Duncan & Hughes
1994; Eulderink & Mellema 1994; Font et al. 1994; Dolezal &
Wong 1995; Falle & Komissarov 1996; Donat et al. 1998; Aloy
et al. 1999; Del Zanna & Bucciantini 2002).
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However, in spite of the success of Godunov-type RHD
codes and, at the same time, of the presence of various exten-
sions of gasdynamic schemes to classical MHD (see the recent
review by Tóth 2000), to date only a couple of RMHD schemes
have been described in the literature. Both codes are second or-
der accurate and are based on linearized Riemann solvers (Roe
matrix) in the definition of fluxes at cell interfaces. This pro-
cess involves the decomposition of primitive variables in a set
of characteristic waves, each of them propagating a single dis-
continuity, and a further composition to obtain the numerical
upwind fluxes. Moreover, a certain amount of extra artificial
viscosity is often needed to stabilize the schemes in particular
degenerate cases. The two codes are described in Komissarov
(1999a; KO from now on), which is a truly multidimensional
scheme, and in Balsara (2001; BA from now on), the latter
tested just against one-dimensional (1-D) shock-tube problems.
There is actually another RMHD code, which has been ex-
tensively used in relativistic 2-D and 3-D jet simulations (e.g.
Koide et al. 1996; Nishikawa et al. 1998), later extended to gen-
eral relativistic (GRMHD) effects (with given Schwarzschild
or Kerr metrics) and applied to the jet formation mechanism
(e.g. Koide et al. 1999, 2000). However, this code cannot be
regarded as belonging to the Godunov family, since it is based
on a second order Lax-Wendroff scheme, thus with a very high
level of implicit numerical viscosity. Moreover, a complete set
of the standard numerical tests, needed to check the properties
of any shock-capturing scheme, has never been published for
such code, so it is difficult to comment on their results and to
compare the respective code performances (especially on con-
tact discontinuities, where shock-capturing codes not based on
linearized Riemann solvers are usually less accurate).

The reasons behind the difficulty of extending shock-
capturing relativistic gasdynamic codes to the magnetic case
are essentially the same encountered in building classical MHD
schemes, but amplified, so to say, by the special relativistic ef-
fects. These difficulties may be summarized basically in two
classes of problems. The first is concerned with the eigenstruc-
ture of the 1-D MHD system, which is much more complex
than in the fluid case since now seven characteristic waves
are involved and many different degeneracies may occur (de-
pending on the relative orientation of the magnetic and veloc-
ity vectors). These problems of non-strict hyperbolicity can be
cured by accurate re-normalizations of the variables (Brio &
Wu 1988; Roe & Balsara 1996), to assure their linear indepen-
dence, and by introducing additional numerical viscosity in the
degenerate cases. The second aspect is more crucial. The multi-
dimensional MHD system, in conservative form, has a specific
irreducible structure: the magnetic field (which is a pseudo-
vector) is advanced in time by an antisymmetric differential
operator, a curl, while all other variables are scalars or vec-
tors advanced in time by a differential operator of divergence
form. We notice that this basic duality in the conservation laws
of the MHD system is also fully invariant under relativistic co-
ordinate transformations: the covariant evolution equation for
B splits into the classical induction equation and in the non-
evolutionary solenoidal ∇ · B = 0 condition.

In numerical schemes where Godunov-type procedures,
based on the divergence conservation form and on cell-centered

variables, are also applied to the induction equation, it comes
out that magnetic field components develop unphysical discon-
tinuities and numerical monopoles which may grow in time. In
RMHD this problem can be relevant: when the magnetic field
is very strong, that is when the Alfvén velocity approaches the
speed of light, the various eigenvalues collapse one onto the
other and it becomes very hard, from a numerical point of view,
to distinguish among different physical states: thus, even very
small errors in the definition of the magnetic field components,
or in the flux derivatives (where the solenoidal condition is im-
plicitly assumed), often lead to unphysical states and to code
crashing. Therefore, the proper character of the induction equa-
tion and the related preservation of the solenoidal constraint are
fundamental issues in numerical RMHD.

To cope with this class of numerical problems, two fam-
ilies of empirical solutions have been proposed: the cleaning
methods, where the magnetic field components are re-defined
at every time step (originally proposed by Brackbill & Barnes
1980, it requires the solution of an additional Poisson equa-
tion), and the eight-wave method (Powell 1994), which mod-
ifies the MHD system by adding a new ∇ · B variable, to be
advected by the flow like the other quantities. These methods
may in some cases alleviate (but not solve) the main difficulties.
A more consistent way to handle this problem is given by the
family of constrained transport (CT) methods (first introduced
by Evans & Hawley 1988), where the induction equation is cor-
rectly discretized to incorporate the solenoidal constraint as a
main built-in property. Many schemes (Dai & Woodward 1998;
Ryu et al. 1998; Balsara & Spicer 1999b, to cite a few) take ad-
vantage of this method, but only in a restricted way, since all
basic upwind procedures are still based on the standard (cell-
centered) Godunov-type formalism and therefore the produc-
tion of numerical monopoles is not avoided. A significant fur-
ther advance has been proposed by KO: after an initial attempt
to extend the eight-wave method to RMHD (failed basically be-
cause of the above mentioned numerical problems), he finally
turns to a CT scheme where the discretized divergence-free
magnetic field components are correctly incorporated in the
momentum-energy flux functions, although the upwind fluxes
for the induction equations are still not properly defined, in
our opinion. However, the only astrophysical application of
such RMHD code published so far is the propagation of light
relativistic jets embedded in a purely toroidal magnetic field
(Komissarov 1999b), where the solenoidal condition is actually
automatically satisfied for simple geometrical reasons (the field
is bound to remain always toroidal), thus this test is not strin-
gent at all for the solenoidal condition preservation problem.

To date, a fully consistent CT-based upwind scheme assur-
ing exact ∇ · B = 0 condition has been proposed by Londrillo
& Del Zanna (2000), LD for brevity. In fact, starting from a
finite volume formulation of the solenoidal condition and of
the induction equation, as in the original CT method, gen-
eral recipes are given to reconstruct (to any order of accuracy)
magnetic field variables at points needed for flux computations
and to formulate approximate Riemann solvers also for the in-
duction equations in the CT form. Moreover, as an applica-
tion, a third order Essentially Non-Oscillatory (ENO) central-
type scheme was proposed and numerically validated against
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various tests. The so-called central schemes do not make
use of time-consuming and system-dependent spectral decom-
positions, and linearized Riemann solvers are replaced by
Lax-Friedrichs type averages over the local Riemann fan. In
this way, the only characteristic quantities entering the scheme
are the local fastest velocities, and also the problems related to
the various degeneracies are thus avoided completely. The price
to pay is just some additional numerical dissipation at contact
and Alfvénic discontinuities, but the high order reconstruction
is often able to compensate for these drawbacks.

The central scheme described in LD was applied to the
RHD system in Del Zanna & Bucciantini (2002), from now on
simply Paper I, where the test simulations presented demon-
strated the accuracy and stability of such scheme, even in
highly relativistic situations, giving equivalent or better (thanks
to its higher order) results than those produced by much more
elaborate Godunov-type algorithms. Here the same third order
ENO-CT central scheme of LD is extended to the RMHD sys-
tem, thus this paper may be considered as the generalization
of Paper I to the magnetic case. Therefore, both the structure of
the paper and the formalism used will be the same as in Paper I,
to which the reader will be often referred, especially for some
numerical scheme details or for test simulations comparisons.
Finally, the CT scheme is extended to generalized orthogonal
curvilinear coordinates in the appendix, thus, the inclusion of
General Relativity effects with a given metric, i.e. the exten-
sion to GRMHD, may be easily achieved (see the appendix of
Koide et al. 1999).

2. Ideal RMHD equations

The covariant fluid equations for special relativistic hydrody-
namics (RHD) were given in Paper I and here the same nota-
tion will be assumed throughout, that is all velocities are nor-
malized against the speed of light (c = 1), Greek (Latin) in-
dexes indicate four (three) vectors, gαβ = diag{−1, 1, 1, 1} is the
Minkowski metric tensor (a flat space is assumed here for ease
of presentation, for the extension to any set of orthogonal curvi-
linear coordinates see the appendix), and xα = (t, x j) is the four
vector of space-time coordinates. The modifications needed to
take electromagnetic forces into account are, like in classical
MHD, the inclusion of extra terms in the energy-momentum
conservation law and a new equation for the magnetic field,
to be derived from Maxwell equations. Our derivation follows
that of Anile (1989), also described in KO and BA.

Written in terms of the (antisymmetric) electromagnetic
tensor Fαβ (F0i = Ei, Fi j = Bk with {i, j, k} = {1, 2, 3}
and cyclic permutations) and of its dual F?αβ = 1

2 ε
αβγδFγδ

(F?0i = Bi, F?i j = −Ek), where εαβγδ is the Levi-Civita al-
ternating pseudo-tensor, the covariant Maxwell equations are:

∂αFαβ = −Jβ, ∂αF?αβ = 0, (1)

where Jα is the four-current containing the source terms, con-
strained by the condition ∂αJα = 0, and we have assumed
4π → 1. On the other hand, the electromagnetic contribution
to the energy-momentum tensor is

Tαβem = FαγF
βγ − 1

4
gαβFγδF

γδ, (2)

to be added to the fluid part in the conservation law ∂αTαβ =
0. Finally, we must introduce the covariant relativistic form of
Ohm’s law in the infinite conductivity approximation, E + u ×
B = 0, that translates into a condition of vanishing covariant
electric field

Fαβuβ = 0, (3)

where uα = (γ, γv j) is the four-velocity and γ ≡ u0 = (1 −
v2)−1/2 is the Lorentz factor. Note that the other approximation
needed to derive the classical MHD equations, namely to ne-
glect the displacement current, is not imposed in RMHD, of
course, and the result is that the current, to be derived from
the first of Eqs. (1), now depends on the time derivative of the
electric field too: J = ∇ × B − ∂t E.

The equations written so far are not easily compared with
their MHD equivalent, due to the presence of the electromag-
netic tensor and of its dual, both containing the electric field.
However, thanks to Eq. (3), E may be substituted everywhere
by defining a magnetic induction four-vector as bα = F?αβuβ,
that allows to write the electromagnetic tensor in terms of uα

and bα alone: Fγδ = εαβγδbαuβ. The components of this new
four-vector are

bα = [γ(u · B), B/γ + γ(u · B)u], (4)

and in the fluid comoving local rest frame we simply have bα =
(0, B). Note the constraints uαbα = 0 and |u|2 ≡ uαuα = −1,
so that |b|2 ≡ bαbα > 0 and bα is a space-like vector, with
|b|2 = B2/γ2 + (u · B)2.

Thanks to these definitions, the complete set of RMHD
equations becomes:

∂α(ρuα) = 0, (5)

∂α[(w + |b|2)uαuβ − bαbβ + (p + |b|2/2)gαβ] = 0, (6)

∂α(uαbβ − uβbα) = 0, (7)

namely the equations of mass conservation, of total energy-
momentum conservation, and of magnetic induction. Here w =
e+ p is the relativistic enthalpy and e = ρ+ p/(Γ− 1) is the rel-
ativistic energy per unit volume for a Γ-law equation of state.
Notice the analogy with classical MHD equations, easily ob-
tained by letting v2 � 1, while RHD equations are recovered
simply by letting bα = 0.

2.1. Evolution equations and the ∇ · B = 0 constraint

Godunov-type shock-capturing numerical methods developed
for classical Euler equations apply for any set of hyperbolic
conservation laws, and Paper I has shown the application to the
RHD case. It is easy to verify that the equations for the fluid
variables, Eqs. (5) to (6), retain the usual conservative form:

∂u
∂t
+

3∑
i=1

∂ f i

∂xi
= 0. (8)

Here u is the vector of conserved variables and f i are their cor-
responding fluxes, along each direction, respectively given by

u = [ρu0, wtotu0u j − b0b j, wtotu0u0 − b0b0 − ptot]T , (9)
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f i= [ρui, wtotuiu j − bib j + ptotδ
i j, wtotu0ui − b0bi]T, (10)

where we have defined wtot = w + |b|2 and ptot = p + |b|2/2.
On the other hand, the equation for bα, Eq. (7), splits into

two parts, which happen to be exactly the same as in classi-
cal MHD (this is not surprising since Maxwell equations are
Lorentz invariant). The spatial component gives the classical
induction equation

∂B
∂t
+ ∇ × E = 0; E = −u × B, (11)

which is properly the time evolution equation for B. Note that
the spatial differential operator is in a curl form, rather than in a
divergence form as Eq. (8). This means that the evolution equa-
tion of each spatial component of B has a missing eigen-space,
basically due to the antisymmetry of the electromagnetic ten-
sor in Eq. (7), as anticipated in the introduction. Thus, a total of
just three independent magnetic fluxes (the electric field vector
components, just one in 2-D) are needed for the evolution of B,
while six independent fluxes were required for the momentum
evolution. The other consequence of the tensor antisymmetric
nature is that the time component of Eq. (7) becomes the usual
MHD solenoidal constraint

∇ · B = 0, (12)

which is not an evolutionary equation but a differential con-
straint on the spatial derivatives of B. This constraint is usu-
ally regarded as just an initial condition, since the form of the
induction equation assures its preservation in time. Therefore,
also numerical schemes must be designed in a way that the spe-
cific divergence-free nature of the magnetic field is taken into
account as a fundamental constitutive property, otherwise spu-
rious magnetic monopoles will affect the overall solution and
often the code stability itself. The CT schemes, and our specific
implementation described in Sect. 3, are the class of numerical
schemes based on this property.

It is now apparent that Eqs. (11) and (12) are substantially
different from the evolutionary conservation laws in Eq. (8).
This fundamental constitutional difference, in both the topol-
ogy of the vector B field and in its time evolution equation, is
better appreciated by introducing the magnetic vector potential
A, defined by B = ∇×A, so that Eq. (12) is automatically satis-
fied and Eq. (11) takes on the following form (in the Coulomb
gauge ∇ · A = 0):

∂A
∂t
+ E = 0. (13)

For a given velocity field (the so-called kinematic approxima-
tion), Eq. (13) may be regarded as a set of three-dimensional
Hamilton-Jacobi equations, where the E components are func-
tions of the spatial first derivatives of the A components. Thus,
the overall MHD and RMHD systems are actually combina-
tions of conservative hyperbolic equations and equations of
Hamilton-Jacobi kind. It is therefore clear that standard numer-
ical upwind schemes developed for Godunov-type hyperbolic
sets of equations cannot be applied, and proper upwind expres-
sions for the magnetic flux functions have to be derived.

2.2. Characteristic wave speeds in 1-D RMHD

The one-dimensional case, say ∂y = ∂z = 0, is, on the other
hand, almost perfectly equivalent to the hydrodynamic case and
the overall system can be cast in conservative form. In this case
Eqs. (11) and (12) yield Bx = const and Eq. (8) becomes a
complete 7 × 7 system of conservation laws, by just adding
the [By, Bz] variables to (9) and the fluxes [−Ez, Ey] to (10).
However, the 1-D RMHD system, like its MHD counterpart,
is not strictly hyperbolic, in the sense that two or more eigen-
values may coincide in some degenerate cases, depending on
the angle between the direction of propagation and the local
magnetic field.

The characteristic structure of this system was first studied
by Anile & Pennisi (1987; see also Anile 1989), who derived
the eigenvalues and eigenvectors of the associated Jacobian
∂ f/∂u by using the covariant notation. All the particular de-
generacies were also taken into account.

However, since in our numerical scheme the detailed char-
acteristic eigenstructure is not required, while only the two
speeds at the local Riemann fan boundaries need to computed,
here we just report the expressions for the eigenvalues, in the
form shown in the appendix of KO. These are one entropy wave

λ0 = vx, (14)

two Alfvén waves

λ±A =
ux ± b̃x

u0 ± b̃0
, (15)

and four magneto-sonic waves (two fast and two slow waves),
that unfortunately do not have a simple analytical expression
and must be derived from the nonlinear quartic equation

(
1 − ε2

) (
u0λ − ux

)4

+
(
1 − λ2

) [
c2

s

(
b̃0λ − b̃x

)2 − ε2
(
u0λ − ux

)2
]
= 0, (16)

where c2
s = Γp/w is the sound speed squared, b̃α = bα/

√
wtot

(|b̃|2 = b̃αb̃α = |b|2/wtot), and ε2 = c2
s + |b̃|2 − c2

s |b̃|2. Note
that the ordering of MHD characteristic speeds and the various
degeneracies are preserved in the relativistic case (Anile 1989),
although the symmetry between each λ± couple of waves is
lost, due to relativistic aberration effects.

Several numerical algorithms may be employed to solve
Eq. (16): Newton’s root finding technique, applied in the proper
interval for each characteristic speed, Laguerre’s method for
polynomials, involving complex arithmetics, or eigenvalues
finding routines, based on the associated upper Hessenberg
matrix. We have tested all these numerical methods by us-
ing the Numerical Recipes (Press et al. 1986) appropriate rou-
tines, which are rtsafe, zroots, and hqr, respectively, under a
wide range of conditions, including various degenerate cases
and ultra-relativistic speeds, temperatures or magnetic fields.
However, in the code we have decided to adopt the analyti-
cal approach, described for example in Abramowitz & Stegun
(1965), which requires in turn the analytical solution of a cu-
bic and of two quadratic algebraic equations. We have found
that this algorithm gives results comparable to Laguerre’s or
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the matrix methods, the most robust and precise ones, and it
is much less computationally expensive. On the other hand,
Newton’s iterative method, which is the fastest in normal con-
ditions, was found to fail in some nearly degenerate cases.

2.3. Primitive variables

In order to compute fluxes, the vector of primitive fluid vari-
ables u = [ρ, v j, p]T have to be recovered from the conserva-
tive ones u = [D,Q j, E]T , defined in Eq. (9), at the beginning
of every numerical time step (please notice that in the present
sub-section E will indicate the total energy, which has nothing
to share with the electric field E). Like for RHD codes, this
procedure must be carried out by some iterative root-finding
routine. In the magnetic case this process is even more diffi-
cult, in spite of the fact that B can be considered as given (its
components are both primitive and conserved variables). In BA
the full 5 × 5 system is solved by inverting the u(u) = 0 set of
nonlinear equations as they stand, providing also all the partial
derivatives needed. However, we have verified that this process
is neither efficient nor stable when relativistic effects are strong.
In Koide et al. (1996) and KO the system to solve was reduced
down to a couple nonlinear equations, while here we manage to
derive just one nonlinear equation to be solved iteratively, with
obvious improvements both in terms of speed and precision.

The first step is to use the definitions of uα and bα to write
the known conservative variables u = [D,Q j, E]T in terms of
the primitive variables. The vector Q becomes

Q = (W + B2)u − (u · B)B, (17)

and by taking the projection along B we find the important re-
lation S ≡ (Q · B) = W(u · B), where like in Paper I we have
used W = wγ2, w = ρ + Γ1 p, and Γ1 = Γ/(Γ − 1).

A 2 × 2 system of nonlinear equations is then derived by
taking the square of Eq. (17) and by using the equation for the
total energy E:

W2v2 + (2 W + B2)B2v2⊥ − Q2 = 0, (18)

W − p +
1
2

B2 +
1
2

B2v2⊥ − E = 0, (19)

where B2v2⊥ ≡ B2v2 − (u · B)2 = B2v2 − S 2/W2. If we then use
the relations

ρ = D
√

1 − v2, p = [(1 − v2)W − ρ]/Γ1, (20)

it comes out that all quantities appearing in the system are writ-
ten in terms of the two unknowns v2 (or equivalently γ) and W.
Once these variables are found numerically, primitive quanti-
ties will be easily derived through Eqs. (20) and by inverting
Eq. (17), that is

u =
1

W + B2

(
Q +

S
W

B
)
· (21)

In order to bring the system down to just a single nonlinear
equation (to be solved numerically, for example by Newton’s
iterative method), we found it useful to define B2v2⊥ = T 2/(W +
B2)2 in Eqs. (18) and (19), where T 2 ≡ B2Q2 − S 2 is a new,
but given, parameter. Then we write Eq. (19) as a third order

algebraic equation for W with coefficients that depend on v2

alone[(
1− 1−v2
Γ1

)
W−E +

ρ

Γ1
+

B2

2

]
(W+B2)2+

T 2

2
=0, (22)

which can be solved analytically (again, see Abramowitz &
Stegun 1965). Note that the cubic polynomial on the left hand
side has a positive local maximum in W = −B2. Thus, since we
know that at least one root must be positive, all the three roots
of Eq. (22) are actually bound to be real, and we have verified
that the largest one always yields the correct result.

The function W(ξ), with ξ = v2, is thus available together
with its derivative W′(ξ), so the final step is to apply Newton’s
method to find the root of F (ξ) = 0, where

F (ξ) = W2ξ + (2 W + B2)
T 2

(W + B2)2
− Q2, (23)

and

F ′(ξ) = W2 + 2 WW′
[
ξ − T 2

(W + B2)3

]
· (24)

The numerical routine actually employed in the code is rtsafe
(Press et al. 1986), which applied with an accuracy of 10−6 in
the range ξmin = 0 and ξmax = 1 − 10−6 (γmax = 1000), typ-
ically converges in 5–10 iterations for any set of conservative
variables and magnetic field components that actually admits a
solution.

The technique described above appears to be extremely ef-
ficient and, above all, robust; we therefore recommend its use
in all RMHD shock-capturing codes, whatever the numerical
scheme actually employed.

3. The finite-difference ENO-CT central scheme

In the present section the third order ENO-CT scheme de-
scribed in LD will be adapted and applied to the RMHD
equations derived above. The ENO-CT scheme employs a
finite-difference discretization framework, and uses Convex
ENO (CENO) reconstruction procedures to get high order non-
oscillatory point values of primitive variables needed to com-
pute numerical flux derivatives. The upwind procedures in nu-
merical fluxes are based on approximate Riemann solvers of
the Lax-Friedrichs type, as in other central schemes. In par-
ticular, here we adopt a flux formula based on two local char-
acteristic speeds, rather than just one as in the code discussed
in LD. The scheme will be here presented in the semi-discrete
formalism, that is time dependency is implicitly assumed for
all spatially discretized quantities. The evolution equations are
then integrated in time by applying a third order TVD Runge-
Kutta algorithm (Shu & Osher 1988), with a time-step inversely
proportional to the largest (in absolute value) of the character-
istic speeds (the magneto-sonic velocities defined in Sect. 2.2)
present in the domain and subject to the CFL condition. The
reader is referred to both LD and Paper I for further numer-
ical references and comments. In any case, see Shu (1997)
for a general overview of ENO schemes, Liu & Osher (1998)
for the original formulation of the CENO central scheme, and
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Kurganov et al. (2001) for the introduction of two-speed aver-
aged Riemann solvers in high order central schemes for both
hyperbolic and Hamilton-Jacobi equations.

3.1. Discretization of fluid and magnetic variables

Given a Cartesian uniform 3-D mesh of Nx×Ny×Nz cells (vol-
umes), with sizes ∆x, ∆y, and ∆z, let us indicate with Pi, j,k ≡
(xi, y j, zk) the cell centers and with Pi+1/2, j,k the points centered
on intercell surfaces (along x in this case). Classical Godunov-
type schemes are usually formulated in a finite-volume (FV)
framework, where state variables are advanced in time as cell
averaged values. By applying Gauss’ theorem to Eq. (8), the
time evolution equation for the vector of fluid variables be-
comes

d
dt

ū = −
3∑

i=1

∆i f̄ i

∆xi
, at Pi, j,k, (25)

where, for each scalar variable, ū ≡ ūi, j,k is the FV cell aver-
aged discretization of u(x) at Pi, j,k . Flux derivatives are given
in conservative form as simple two-point differences of the nu-
merical fluxes f̄ i. These fluxes are defined as intercell surface
averages and are stored on surface centers, each in the direction
corresponding to the i component, with i = 1, 2, 3. For exam-
ple, f̄ = f̄ x is located on Pi+1/2, j,k points, and the ∆x operator,
centered in Pi, j,k, is defined as

[∆x f̄ ]i, j,k = f̄i+1/2, j,k − f̄i−1/2, j,k. (26)

Similar expressions hold in the other directions.
A different strategy is needed to reconstruct the magnetic

field variables. The induction Eq. (11) is in curl form, thus the
correct procedure for discretization in the FV framework is the
application of Stokes’ theorem. The x component gives

d
dt

B̄x = −∆yĒz

∆y
+
∆zĒy
∆z
, at Pi+1/2, j,k, (27)

where B̄x is discretized as surface average and located at
Pi+1/2, j,k intercell points, while for example Ēz is a line average
and is located at Pi+1/2, j+1/2,k volume edge points (cell corners
in 2-D). Similar expressions are defined for the y and z compo-
nents. Thanks to the above discretization, it is straightforward
to prove that the numerical solenoidal condition will be alge-
braically satisfied at all times (if satisfied at t = 0):

d
dt

(
∆xB̄x

∆x
+
∆yB̄y
∆y
+
∆z B̄z

∆z

)
≡ 0, at Pi, j,k. (28)

This is the fundamental property of the CT method and relies
on the definition of the staggered field components

[B̄x]i+1/2, j,k, [B̄y]i, j+1/2,k, [B̄z]i, j,k+1/2 (29)

as primary data. It is important to notice that these data contain
essential informations not only for the discretization of the cor-
responding variables at cell centers, but also for the definition
of longitudinal derivatives at the same points, since two values
per cell are available for each component.

A first consequence is that a continuous numerical vector
potential Ā can be derived in a unique way by inverting the dis-
cretized form of the ∇ × A = B relation. By applying Stokes’
theorem once more it is easy to verify that these data must be
defined as line averages along the longitudinal direction and
stored at the same locations as the corresponding electric field
Ē components. On the other hand, if the Ā components are
used as primary data, then the time evolution discretized equa-
tions in Eq. (27) must be replaced by

d
dt

Āx = −Ēx at Pi, j+1/2,k+1/2, (30)

and similarly for the other components. The field components
in Eq. (29) are then derived as

B̄x =
∆yĀz

∆y
− ∆zĀy
∆z

at Pi+1/2, j,k, (31)

and similarly for the y and z components. In the CT framework,
the two choices are perfectly equivalent, and the solenoidal
constraint Eq. (28) is still clearly satisfied exactly.

A second main property is given by the continuity condition
of the face averaged components (i.e. the numerical magnetic
fluxes) in Eq. (29). For example, the numerical function

B̄x(x) =
1
S

∫
S

Bx(x) dS , (32)

is a continuous function of x, where S is a cell section normal to
the x direction. A simple proof is given by integrating∇·B = 0
on a volume including S and tending to it by letting ∆x → 0
(see LD). Therefore, at points of discontinuity (intercell sur-
faces) staggered data are well defined as point values in the
corresponding longitudinal direction, having a single-state nu-
merical representation there (this fundamental property will be
fully appreciated later on for upwind calculations) and showing
at most discontinuous first derivatives along the corresponding
coordinate.

In our ENO-CT scheme, the FV discretization is replaced
by a finite-difference (FD) discretization based on point values,
which is more efficient in the multi-dimensional case and al-
lows to use just 1-D interpolation routines. The primary data
actually employed in our scheme are thus the point-valued
u fluid variables, defined at cell centers Pi, j,k, and the point-
valued potential vector A components, located at cell edges
exactly as in the FV approach. The time evolution equations
are thus, in the FD CT scheme

d
dt

u = −
3∑

i=1

∆i f̂
i

∆xi
, at Pi, j,k, (33)

and

(d/dt)Ax = −Ex, at Pi, j+1/2,k+1/2,

(d/dt)Ay = −Ey, at Pi+1/2, j,k+1/2, (34)

(d/dt)Az = −Ez, at Pi+1/2, j+1/2,k,

where now the numerical fluid flux functions f̂
i

are such that
their volume average approximate the FV fluxes f̄ i to the given
order of accuracy, while electric fields in the FD formalism are
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simply point-valued numerical functions. Eqs. (33) and (34)
are thus the time evolution equations that are integrated by the
Runge-Kutta time-stepping algorithm. The reconstruction pro-
cedures and the upwind formulae to define numerical fluxes f̂

i

and E, in the respective locations, are given in the following
sub-sections.

3.2. Reconstruction procedures

At this preliminary level of analysis, everything is exact.
Approximations come into play only in the reconstruction pro-
cedures, when point values needed for flux computations are
recovered from primary numerical data to some accuracy level.
At a second order approximation, the procedures are straight-
forward, since the two discretization approaches, FV and FD,
coincide. At higher order of accuracy, on the other hand, spe-
cific procedures must be defined.

The first step is to derive magnetic field components from
vector potential data. This is done in our scheme at the begin-
ning of each time-stepping sub-cycle. To third order accuracy,
we first define

Âx = [1 − γ1D(2)
y − γ1D(2)

z ]Ax, at Pi, j+1/2,k+1/2,

Ây = [1 − γ1D(2)
z − γ1D(2)

x ]Ay, at Pi+1/2, j,k+1/2, (35)

Âz = [1 − γ1D(2)
x − γ1D(2)

y ]Az, at Pi+1/2, j+1/2,k,

where γ1 = 1/24 and D(2) is the non-oscillatory numerical
second derivative defined in Paper I. Then the divergence-free
magnetic field components are derived directly from the high
order approximation of B = ∇ × A, which gives

B̂x = (∆yÂz)/∆y − (∆zÂy)/∆z, at Pi+1/2, j,k,

B̂y = (∆zÂx)/∆z − (∆xÂz)/∆x, at Pi, j+1/2,k, (36)

B̂z = (∆xÂy)/∆x − (∆yÂx)/∆y, at Pi, j,k+1/2.

These new staggered field components clearly satisfy, at all
times t:

∆x B̂x

∆x
+
∆y B̂y
∆y
+
∆z B̂z

∆z
≡ 0, at Pi, j,k, (37)

which is the point-value equivalent expression of Eq. (28).
Thus, in the FD version of the CT scheme, the fundamen-
tal divergence-free magnetic components are those defined in
Eq. (36), whose divided differences directly give high order ap-
proximations of the longitudinal derivative.

Having assured approximated first derivatives satisfying
exact divergence-free relations, it is now possible to reconstruct
the corresponding point values in the longitudinal coordinate,
which will be needed for the definition of numerical fluxes, in a
way to maintain the value of the first derivative. Since only one-
dimensional operators, in turn, are now required, we denote by
B the unknown point-value numerical data and by B̂ the data
derived just above, where both sets are located at the same in-
tercell points. By definition, to third order approximation we
have

[1 − γ1D(2)]B = B̂. (38)

For a given set of values B̂, one has then to invert the D(2)

operator, which is not based on a fixed stencil of data and the
resulting matrix appears then to be highly non-linear. However,
the operator on the left hand side can be inverted in an ex-
plict way by using the Taylor expansion [1 − γ1D(2)]−1 '
1 + [γ1D(2)] + [γ1D(2)]2 + . . ., so that the component B may
be approximated by a finite order iteration as

B(n) = B̂ + [γ1D(2)]B(n−1); B(0) = B̂. (39)

It is essential to notice that the approximation order of the B
point values does not increases with the iteration number n, be-
ing always of the third order of the base scheme. What changes
is the residual error in the related solenoidal condition: usu-
ally n = 5 iterations are enough to assure the preservation of
the longitudinal derivative value, so that Eq. (37) remains exact
within machine accuracy in the computation of flux derivatives
too, thus avoiding spurious monopoles terms in the dynamical
equations.

A final interpolation step is needed to define point-value
magnetic field B components at cell centers Pi, j,k, where fluid
conservative variables u are stored. Thus, at the beginning
of each time sub-cycle, point-value primitive variables u =
[ρ, v j, p]T can be recovered as described in Sect. 2.3.

In order to use these variables in the definition of nu-
merical fluxes, a reconstruction step is required along each
direction, to provide point-value data at intercell points. For
multi-dimensional calculations and for higher than second or-
der schemes, like in our case, the reconstruction routines are
one-dimensional only in the FD framework, which is then to
be preferred. Moreover, the reason for reconstructing the prim-
itive variables is also apparent: if reconstruction were applied
to conservative variables, then the time-consuming (in RMHD)
algorithm of Sect. 2.3 would be needed at intercell points for
each direction. The reconstruction routines employed in our
code are the Convex ENO procedures described in Paper I,
with a choice of two slope limiters (MinMod and Monotonized
Centered) to prevent unwanted oscillations and to preserve
monotonicity.

Reconstruction procedures at intercell locations give two-
state, left (L) and right (R), reconstructed variables, depending
on the stencil used in the definition of the (quadratic) interpo-
lation polynomial. However, not all the eight variables retain
such two-state representation, since we know from Eq. (32)
that the longitudinal field component along the direction of flux
differentiation must be continuous at corresponding intercell
locations, and this property is preserved also for point-value
staggered B components defined through Eq. (39). Therefore,
the longitudinal field is not reconstructed as the other seven
Godunov variables, and the single-state value provided by
Eq. (39) is assumed in flux calculations. Notice that this is
the crucial point discussed in the introduction: the use of the
divergence-free field components in numerical fluxes permits
to avoid the onset of spurious monopoles in the computation of
the right-hand side of Eq. (33).

Finally, point-value numerical fluxes f defined at intercell
locations (the proper upwind procedures to define them will
be discussed in the following sub-section) have to be further
transformed in the corresponding f̂ fluxes defined in Eq. (33).
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This step is required to approximate flux derivatives to higher
than second order. To third order accuracy we have, as usual

f̂ = [1 − γ1D(2)] f , (40)

whereas this final step is not needed for electric fields, which
are defined in Eqs. (34) as point-value data.

3.3. Central-upwind numerical fluxes

In Lax-Friedrichs central-type schemes, two couples of char-
acteristic velocities λL± and λR± are first defined at intercell lo-
cations. These velocities, which are the fast magneto-sonic
speeds in RMHD, are those at the boundaries of the two local
Riemann fans (one fan for each L or R state), and are derived by
using the procedure described in Sect. 2.2. Then a local aver-
aged Riemann problem is solved by using either the two-speed
HLL (from Harten, Lax, and van Leer) or the single-speed LLF
(local Lax-Friedrichs) flux formulae:

f HLL =
α+ f L + α− f R − α+α−(uR − uL)

α+ + α−
, (41)

f LLF =
1
2

[
f L + f R − α

(
uR − uL

)]
, (42)

where

α± = max{0,±λL
±,±λR

±}; α = max{α+, α−}, (43)

where basically all the other intermediate states are averaged
out. Notice that when the local Riemann fan is symmetric, then
α+ = α− = α and the two fluxes coincide, whereas, when both
fast magneto-sonic speeds have the same sign one of the α±
is zero and the HLL flux becomes a pure upwind flux, either
f L or f R. This is why the HLL scheme described above was
defined in Kurganov et al. (2001) as central-upwind.

The upwind states for the numerical E flux functions of the
induction equation are defined by the same averaged Riemann
solver, now to be applied to flux functions having a base four-
state structure. This different structure arises because at cell
edges, where the electric fields must be defined, two surfaces
of discontinuity intersect, and modes of Riemann fans com-
ing from different directions overlap there. A proper expression
that extends Eqs. (41) and (42) to the induction equation fluxes
is derived by taking advantage of the analytical and numerical
experience developed for the Hamilton-Jacobi equations. For
ease of presentation, only the z component of the electric field,
Ez = −(vxBy − vyBx) (that usually needed in 2-D simulations),
will be treated here, while the x and y components are easily
obtained by cyclic permutations of the indexes.

Let us indicate with double upper indexes these four states,
where the first refers to upwinding along x and the second
along y, obtained by reconstructing the required primitive vari-
ables at the edge point Pi+1/2, j+1/2,k by applying a sequence
of two independent one-dimensional reconstruction routines.
For each component of the magnetic field just one reconstruc-
tion in the transverse direction is actually required, of course.

The proposed HLL and LLF upwind formulae for the Ez flux
function are given respectively by

EHLL
z =

α+xα
+
y ELL

z +α
+
xα
−
y ELR

z +α
−
xα
+
y ERL

z +α
−
xα
−
y ERR

z(
α+x + α

−
x
) (
α+y + α

−
y

)

+
α+xα

−
x

α+x + α
−
x

(
BR
y − BL

y

)
− α+y α

−
y

α+y + α
−
y

(
BR

x − BL
x

)
, (44)

ELLF
z =

1
4

(
ELL

z +ELR
z +ERL

z +ERR
z

)

+
1
2
αx

(
BR
y − BL

y

)
− 1

2
αy

(
BR

x − BL
x

)
. (45)

The α±x and α±y at Pi+1/2, j+1/2,k required above should be calcu-
lated by taking the maximum characteristic speed (in absolute
value) among the four reconstructed states, whereas for sake
of efficiency we actually consider the maximum over the two
neighboring inter-cell points, where these speeds had been al-
ready calculated for fluid fluxes. As usual, the LLF numerical
flux is obtained from the HLL one by letting α+x = α

−
x = αx and

α+y = α
−
y = αy.

Note that for a pure 2-D case ∂xAz = −By and ∂yAz =

+Bx, thus for a given velocity field the induction equation
simply becomes the Hamilton-Jacobi equation (d/dt)Az =

−Ez(∂xAz, ∂yAz) and our upwind formulae correctly match in
this case with those given in Kurganov et al. (2001), where
the HLL central-upwind scheme was applied to this kind of
equations. Moreover, notice that for discontinuity surfaces co-
incident with one of the inter-cell boundaries, that is for 1-D
situations, Eqs. (44) and (45) reduce respectively to Eqs. (41)
and (42), as it should be. Thus, for 2-D or 1-D calculations, our
3-D ENO-CT scheme automatically treats the magnetic field
components which does not require a Hamilton-Jacobi formu-
lation in the usual Godunov-type approach.

The fact that the magnetic numerical fluxes for the induc-
tion equation must use upwind formulae based on four-state
quantities seems to have been overlooked by the other authors,
who generally just interpolate the x and y 1-D single-state up-
wind fluxes already calculated at intercell points to the cell cor-
ner where Ez must be defined (we specialize here to a 2-D sit-
uation). However, this procedure is clearly incorrect, because
at cell corners only Bx and By have a two-state representation,
whereas vx and vy retain the complete four-state representation.

4. Numerical results

The numerical verification of the code is reported here in three
separate sub-sections: 1-D shock tubes are presented in the
first, some 2-D test simulations of astrophysical interest are
shown in the second, while the third subsection is devoted
to more quantitative tests concerning code convergence on
smooth fields in both 1-D and 2-D.

Since in 1-D RMHD the solenoidal constraint is automat-
ically satisfied and transverse magnetic field components be-
have essentially like the other conservative variables, the shock
tube tests shown here just illustrate the ability of the code to
handle degenerate cases (where the system is no longer strictly
hyperbolic due to the coincidence of two or more eigenvalues)
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Fig. 1. The relativistic analog of Brio & Wu (1988) MHD test problem involving a compound wave. If compared to BA, our left moving
compound shock and right moving slow shock are better resolved. Here the base scheme CENO3-HLL-MC is used, with N = 1600 grid points
to compare with BA and Courant number CFL = 0.5.

and to separate the various Riemann discontinuities or rarefac-
tion waves, which are more numerous in the magnetized case
(up to seven) rather than in the fluid case (just three). On the
other hand, multidimensional tests truly prove the robustness
of the code and its accuracy in preserving ∇ · B = 0 in time,
thus avoiding the onset of spurious forces due to the presence
of numerical magnetic monopoles. The solenoidal constraint
is preserved within machine accuracy, like for all CT schemes,
and therefore the spatial distribution of ∇·B and its evolution in
time will not be shown (however, see LD for proofs in classical
MHD tests).

For all the simulations that we will show, the scheme de-
scribed above is applied without any additional numerical vis-
cosity term, which are instead introduced by both KO and BA
in order to stabilize their Roe-type codes. The numerical pa-
rameters that may be changed in our simulations are just the
CFL number (here always c = 0.5), the reconstruction slope
limiter (the Monotonized Centered, MC, or the most smear-
ing MinMod, MM, for the multidimensional highly relativistic
tests shown below; see Paper I for the precise definition of these
limiters), the order of the reconstruction (third, with CENO
routines, whenever possible), and the central-type averaged
Riemann solver (we always use the HLL solver). Concerning
this last point, we have verified that HLL and LLF actually give
almost identical results in all simulations. This is easily ex-
plained: in RMHD either the sound speed or the Alfvén speed

are often high, especially at shocks where upwinding becomes
important, so that α+ ∼ α− ∼ α ∼ 1 and the two fluxes tend to
coincide.

4.1. One-dimensional tests

Shock-tube Riemann problems are not really suited for high
order shock capturing codes, because oscillations may easily
appear near discontinuities. This is especially true when the re-
construction is not applied to characteristic waves, because the
various contributions cannot be singled out and, for example,
it is impossible to steepen numerically contact or Alfvénic dis-
continuities. However, we will see here that the base third order
CENO3-HLL-MC scheme is able to treat this kind of prob-
lems reasonably well, usually achieving similar or even better
accuracy than characteristics-based second order schemes. In
Table 1 the parameters for the initial left (L) and right (R) states
of the proposed Riemann problems are reported (in all cases
vy = vz = 0, Γ = 5/3 and t = 0.4). These are the same tests as in
BA, except the first where Γ = 2 was used. Moreover, for ease
of comparison, the same resolution used in BA, N = 1600 grid
points, is employed.

The results relative to the first test are shown in Fig. 1.
This is the relativistic extension of the classic Brio & Wu
(1988) test, where a compound, or intermediate, shock wave
is formed. There is still a debate going on about the reality of
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Fig. 2. A couple of relativistic, magnetized blast waves. The first (upper panel) has a moderate initial pressure jump (pL/pR = 30), whereas
the second (bottom panel) has a much stronger jump (pL/pR = 104), producing a very narrow density peak and a Lorentz factor of γ ' 3.4.
Numerical settings are the same as in Fig. 1.
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Fig. 3. The relativistic MHD shock reflection problem, with γ ' 22.4 flows colliding at x = 0.5. This test is crucial for two reasons: the
post-shock oscillations, here damped by reconstructing at second order, and the wall heating problem, that appears to be quite reduced by the
use of HLL.

Table 1. Constant left (L) and right (R) states for the Riemann
problems.

Test ρ vx p Bx By Bz

1 L 1.0 0.0 1.0 0.5 1.0 0.0
1 R 0.125 0.0 0.1 0.5 −1.0 0.0
2 L 1.0 0.0 30.0 5.0 6.0 6.0
2 R 1.0 0.0 1.0 5.0 0.7 0.7
3 L 1.0 0.0 1000.0 10.0 7.0 7.0
3 R 1.0 0.0 0.1 10.0 0.7 0.7
4 L 1.0 0.999 0.1 10.0 7.0 7.0
4 R 1.0 −0.999 0.1 10.0 −7.0 −7.0

such structures, invariably found by any shock-capturing code
but not predicted by analytic calculations (e.g. Barmin et al.
1996; Myong & Roe 1998). However, it is not our intention to
contribute to that debate, here we just want to show that our
third order reconstruction with Monotonized Center slope lim-
iter gives better accuracy for both the left-going intermediate
shock and the right-going slow shock, in comparison to the
second order scheme of BA (which employs a MinMod limiter
on magneto-sonic shocks and a special steepening algorithm
for linearly degenerate characteristic variables, i.e. Alfvénic
and contact discontinuities, actually switched off for compound
waves). As we can see, the total absence of characteristic waves
decomposition in our code does not prevent at all the sharp
definition of discontinuities. Moreover, oscillations due to high

order reconstruction and to the use of the most compressive MC
limiter, evident in the vx profile, are kept at a very low level,
while, at the same time, transitions between constant states and
rarefaction waves are rather sharp.

A couple of blast wave examples are shown in Fig. 2, again
taken from BA, the first with a moderate pressure jump and the
second with jump as large as 104, producing a relativistic flow
with a maximum Lorentz factor of γ ' 3.4. Also in these cases
our results are basically equivalent to those in BA, in spite of
some small spurious overshoots (more apparent in the ρ pro-
file in the upper panel and in the γ profile of the second panel),
due to the compressive limiter, and of a rather poorly resolved
contact discontinuity (in the first test, in the second the den-
sity peak is far too narrow to recognize it), due to the fact that
we cannot steepen it artificially because our component-wise
reconstruction. Again, oscillations are nearly absent and rar-
efaction waves are very well defined. The performances on this
kind of tests mainly depend on the limiter choice and on the
reconstruction order, so both accuracy and numerical problems
are similar to those already shown in the RHD case.

Finally, in Fig. 3 we show the fourth test proposed by BA,
which is the magnetic extension of the shock reflection problem
of Paper I. To reduce post-shock oscillations, more evident in
the pressure profile, we have run this test at second order, thus
as in BA; in spite of this our slow shocks are better resolved and
the wall heating problem produces a lower dip in the density
profile at x = 0.5. We have also run this test by using highly
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Fig. 4. A RMHD 2-D strong explosion with a pressure jump as high as 105. The resolution is Nx = Ny = 250 grid points, and the base
multidimensional scheme employing HLL solver and MM limiter is used. Grayscale levels are displayed for density, kinetic pressure, magnetic
pressure, and Lorentz factor (together with field lines), where 5.36 × 10−3 ≤ ρ ≤ 5.79, 0.0 < p ≤ 45.2, 4.32 × 10−2 ≤ pm ≤ 72.2, and
1.0 ≤ γ ≤ 4.35.

relativistic flows with γ ' 224, as in Paper I, and we have
not met any particular problem. The good performance of our
code in this last test, in its second order version, is due to the
use of the HLL solver which is not based on the definition of
an intermediate state, based on the left and right reconstructed
quantities, for the definition of characteristic speeds, as it is
done in usual Roe-type solvers.

4.2. Multidimensional tests

For truly multidimensional RMHD tests, analytic solutions are
not available and so the verification of the code must be done

at a rather qualitative level. Here we will present a cylindri-
cal blast explosion, a cylindrical rotating disk, both in 2-D
Cartesian coordinates with a uniform magnetized medium, and
the same astrophysical jet of Paper I in cylindrical coordinates,
now propagating in a magnetized background. The only other
2-D RMHD code for wich extensive numerical verification is
available in the literature is KO, where two blast explosions and
a Cartesian 2-D jet were tested, in addition to some simulations
of simple 1-D waves and shocks on a 2-D grid which will not
be repeated here.

In the first test we use the standard [0, 1] × [0, 1] Cartesian
grid, here with a resolution of Nx = Ny = 250 grid points, and
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Fig. 5. The relativistic analog of the rotor test, with an initial maximum Lorentz factor of about 10. A high resolution (Nx = Ny = 400 grid
points) simulation is shown, with the same numerical settings as in Fig. 4. Grayscale levels are displayed for density, kinetic pressure, magnetic
pressure, and Lorentz factor (together with field lines), where 0.35 ≤ ρ ≤ 8.19, 5.31 × 10−3 ≤ p ≤ 3.88, 3.77 × 10−4 ≤ pm ≤ 2.43, and
1.0 ≤ γ ≤ 1.79.

we define an initially static background with ρ = 1.0, p = 0.01
and Bx = 4.0. The relativistic flow comes out by setting a much
higher pressure, p = 103, within a circle of radius r = 0.08
placed at the center of the domain. Here we use Γ = 4/3 to
reduce plasma evacuation at the center. In Fig. 4 we show the
situation at t = 0.4, when the flow has almost reached the outer
boundaries. The flow speed reaches its maximum value along
the x direction, γmax ' 4.35, because the expansion of the blast
wave is not slowed down by the presence of a transverse mag-
netic field, as it happens along y where field lines are squeezed
producing the highest magnetic pressure. Magnetized cylindri-
cal blast wave are a nice tool to investigate the behavior of the

plasma, and the robustness of the code, in a variety of degen-
erate cases (see KO for a detailed description of the various
types of shocks involved). In this simulation we can see that,
despite the absence of appropriate Riemann solvers handling
the degeneracies, our code gives smooth and reasonable results
in all directions. If we compare with the results shown by KO,
we may see that in spite of the absence of additional artificial
resistivity and of the smoothing of the initial structure (both in-
cluded in KO), our results are rather smooth. Only low-level
noise in the density may be seen in the expanding density shell
near the diagonals, reminiscent of the numerical artifacts found
by KO in a run without resistivity. These errors are possibly due
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to the use of Cartesian geometry, since numerical errors on the
independent vx and vy reconstructions are the largest precisely
along diagonals.

Another point raised by KO is the possibility of non-strict
total energy conservation even in CT upwind MHD schemes,
since magnetic field components are stored and evolved at dif-
ferent locations rather than at cell centers where fluid variables
are defined. However, if the total energy, which obviously is a
conservative variable, is not re-defined in order to prevent un-
physical states, it must be globally conserved algebraically. We
have checked that in this 2-D test the total energy is conserved
within machine accuracy, as expected. In our opinion, the re-
sults found by KO in his set of analogue tests, where the total
energy is shown to decrease in time (up to a value as large as
3% in the intermediate case, see his Fig. 12), are mainly due
to the presence of a non-consistent treatment of the artificial
resistivity, which is absent in our code.

The same numerical parameters, but with a higher resolu-
tion (Nx = Ny = 400), are employed in the second simulation,
here adapted to the relativistic case from the classical MHD
one (Balsara & Spicer 1999b; LD; Tóth 2000). A disk of ra-
dius 0.1 with higher density, ρ = 10, rotating at high relativis-
tic speed, ω = 9.95 ⇒ γmax ' 10.0, the rotor, is embedded
in a static background with ρ = 1.0, p = 1.0 and Bx = 1.0
(Γ = 5/3). In Fig. 5 the complicated pattern of shocks and tor-
sional Alfvén waves launched by the rotor may be seen at the
usual output time t = 0.4, when the central field lines are ro-
tated of an angle of almost 90◦. This magnetic braking slows
down the rotor, whose maximum Lorentz at the output time
is just γ = 1.79. Note how the initial high density central re-
gion has been completely swept away: the density has now its
minimum (ρ = 0.35) at the center and the material has gone
to form a thin oblong-shaped shell. In spite of the presence of
very strong shear flows (again, no smoothing is applied to the
disk boundary in the initial conditions), it appears that our cen-
tral high order HLL solver is good enough both in providing
high accuracy on smooth waves and in preventing numerical
oscillations at shocks. The turbulent aspect of the high density
shell should be due to the nonlinear evolution of shear-flow in-
stabilities, since its position coincide with the transition layer
where the flow changes its direction from tangential to radial.

Finally, for a truly astrophysical application and as a test
of the ENO-CT scheme in a non-Cartesian geometry, we sim-
ulate the propagation of a relativistic axisymmetric jet in cylin-
drical coordinates. The initial settings are taken the same as
in Paper I, for ease of comparison with the non-magnetized
case. These are a domain [0, 20] along z (Nz = 400) and [0, 8]
along r (Nr = 160), corresponding to a common resolution of
20 grid points per inlet radius, a static background plasma with
ρ = 10.0, p = 0.01, Bz = 0.1 (Γ = 5/3), and jet parame-
ters of vz = 0.99 and ρ = 0.1, while pressure and magnetic
fields are the same as in the external medium, corresponding
to a density ratio η = 1/100 and to a relativistic Mach num-
ber M = γv/γcscs = 18.3 and to a relativistic Alfvénic Mach
number MA = γv/γcA cA = 24.3, where c2

s = Γp/wtot and
c2

A = B2/wtot. Boundary conditions are reflective at the axis
and extrapolation is assumed across the other boundaries. In

Fig. 6. Magnetized axisymmetric jet simulation in cylindrical coordi-
nates z and r, with Nz = 400 and Nr = 160 (20 grid points per inlet
radius are employed). The evolution is shown here for t = 35, with the
same settings as in Figs. 4 and 5. In the top panel grey-scale shades
and contours are displayed for −Log10(ρ), with ρmin ' 0.095 (black)
and ρmax ' 38.6 (white). In the bottom panel Lorentz factor and the
magnetic field lines are displayed together, where γmax ' 7.14 (black).

the region 0 < z < 1, 0 < r < 1, the initially smoothed jet
values are kept constant in time.

The evolution is shown in Fig. 6 at t = 35, where the den-
sity logarithm, the Lorentz factor and the magnetic field lines
are displayed. Note that the head of the jet moves faster than
in the non-magnetized case, because of the confinement due to
the compressed magnetic field lines (initial equipartition is as-
sumed, so B2 = p) that also reduces the extension of the cocoon
and stabilizes Kelvin-Helmoltz instabilities, so nicely defined
in Paper I. Additional reasons for this latter aspect are of nu-
merical type: the use of MM rather than MC slope limiter and
the higher numerical viscosity, due to the magnetic contribution
in the fast magneto-sonic speeds, introduces extra smoothing of
contact discontinuities.

As we can see from this set of 2-D examples (the 3-D case
does not present any additional difficulty), our code is able to
obtain similar results to those shown in KO. Like in the fluid
case, we have found that the higher order of the scheme can
compensate the lack of characteristic waves decomposition.
Even the physical limits that the code is capable to cope with
look very similar to both KO and Koide et al. (1996), essen-
tially because of errors in reconstruction of multi-dimensional
vectors. In fact, separate 1-D reconstruction on vector com-
ponents may easily produce unphysical states, for example v2

may be greater than one or the errors on B2, needed for fluxes
and Alfvénic or magneto-sonic speed calculations, may be too
large leading to states with superluminal characteristic modes.
While the former problem may be cured by eliminating the
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Fig. 7. Convergence test for the 1-D and 2-D CP Alfvén wave problem.
Relative L1 errors on vz are shown in logarithmic scale. Note that the
code soon achieves third order convergence in both cases. The errors
in the 2-D case are larger because two periods fit on the main diagonal.
The last point in the 1-D case refers to a slightly larger error than
expected for perfect third order accuracy, because relativistic effects
begin to appear on the wave profile and we are no longer comparing
with the correct solution.

reconstruction in some cases, the latter is more difficult to pre-
vent. Another problem, common to classical MHD (see Balsara
& Spicer 1999a), appears in situations of low-beta plasma,
where β = p/B2. When the magnetic field is too strong, the
pressure is derived numerically as a difference of two very large
numbers (the total energy and the magnetic pressure), so it may
even become negative. In our code, when the routine described
in Sect. 2.3 still manages to find a solution for v2 but then nega-
tive pressures are found, we reset p to a small value (10−6). The
lowest value of the plasma beta that the code is able to han-
dle, when relativistic flows are present, appears to be around
10−3 − 10−4. Typical critical situations are strong rarefactions,
as in the 2-D blast wave presented above.

4.3. Convergence tests

The tests presented in the previous subsections were mainly de-
voted to show the robustness of the code on highly relativistic
flows and shocks, thus also proving the useful property of the
CENO3 reconstruction algorithm to reduce itself to lower or-
ders near discontinuities, avoiding oscillations typical of high-
order central-type schemes. In the present subsection we check
the high resolution properties of the interpolation routines on
smooth fields. In cases where discontinuous features are ab-
sent, these algorithms are designed to achieve third order ac-
curacy. However, the reader might wonder whether the overall
RMHD scheme itself, which is based on a rather complicated
sequence of CENO3 reconstruction and derivation routines, es-
pecially in the multidimensional case, is really able to preserve
global third order accuracy properties in both time and space.

To this porpouse let us study the propagation of a
monochromatic relativistic circularly polarized (CP) Alfvén
wave. In the limit of small amplitudes the total magnetic field

strength is preserved in time, the Alfvén speed is given by
B0/
√
wtot and the relation between velocity and magnetic fluc-

tuations reduce to δu = ±δB/√wtot, similarly to the classical
MHD case. Define now, at t = 0, the various quantities in a
generic cartesian reference frame (ξ, η, ζ) as ρ = 1, p = 0.1,
vξ = 0, Bξ = B0 = 1, and

vη = −Bη = A cos(2πξ), vζ = −Bζ = A sin(2πξ), (46)

where we have taken A = 0.01. In the 1-D case we simply
have (ξ, η, ζ) = (x, y, z), whereas in the 2-D case we consider
propagation along the x = y direction, so that (ξ, η, ζ) = ((x +
y)/
√

2, (−x + y)/
√

2, z). In both cases [0, 1] intervals and peri-
odic boundary conditions have been assumed, so that after one
period t = T the wave should return unchanged to the initial po-
sition, as long as transverse relativistic effects can be neglected
(they scale as A2 = 10−4). In 1-D B0 = 1 and the wave period
is T = 1, while in 2-D we take B0 =

√
2 ⇒ B0x = B0y = 1, so

that two complete spatial periods are set along the main diago-
nal x = y and therefore T = 0.5.

Third order convergence, in time and space, can thus be
proved by measuring relative errors of a certain quantity, vz in
our case, at different resolutions, where the error is here evalu-
ated as the L1 norm of the numerical solution after one period
T , compared to the initial settings:

L1(vz) =

∑
i j |vz(xi, y j, t = T ) − vz(xi, y j, t = 0)|∑

i j |vz(xi, y j, t = 0)| · (47)

In Fig. 7 the errors are plotted in both 1-D and 2-D cases as a
function of the number of grid points employed N = Nx = Ny,
in logarithmic scale. As expected, third order accuracy is
achieved, already in low resolution runs. The base scheme em-
ployed is CENO3-HLL-MM, which gives the smoothest pro-
files, more appropriate to wave-like features. However, we have
also tested the sharper MC limiter: third order accuracy is glob-
ally preserved, but the behavior of the relative errors is more
oscillatory, probably due to artificial compression that tends to
sharpen somehow even sinusoidal waves (see Fig. 5 of Paper I).

5. Conclusions

The shock-capturing 3-D MHD scheme of Londrillo &
Del Zanna (2000) is applied to the special relativistic case, thus
extending the code for relativistic gasdynamics described in
Del Zanna & Bucciantini (2002), Paper I, to the magnetic case.
This is the first higher than second order (third) upwind scheme
developed for RMHD, to which high resolution Godunov-type
methods have started to be applied only very recently. Instead
of defining complicated linearized Riemann solvers, usually
based on reconstructed characteristic fields, our scheme just
uses the local fastest characteristic velocities to define a two-
speed HLL-type Riemann solver. Moreover, reconstruction is
applied component-wise, thus time-consuming spectral decom-
position is avoided completely, in the spirit of the so-called cen-
tral schemes. This is of particular importance in both MHD and
RMHD, since we do not need to worry about ubiquitous degen-
erate cases, usually handled in Roe-type schemes by adding ar-
tificial numerical viscosity.
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A main feature of our code is the correct treatment of the
solenoidal constraint, which is enforced to round-off machine
errors by extending the constraint transport (CT) method, orig-
inally developed for the induction equation alone, to the overall
RMHD system: the flux functions are correctly defined by us-
ing the staggered magnetic field components, thus avoiding the
onset of monopoles even at discontinuities. It is important to
notice that, in order to obtain such results, ∇ · B must be kept
equal to zero at cell centers and it must be calculated by us-
ing the same staggered components which are evolved in time
and the same discretizations applied to flux derivatives (see
Tóth 2000, for examples where these properties do not apply).
Moreover, numerical fluxes based on four-state reconstructed
quantities are defined for the induction equation and here ap-
plied to a two-speed central-upwind solver for the first time. In
our opinion, to date our method is the only consistent applica-
tion of CT to an upwind scheme for mixed systems of hyper-
bolic and Hamilton-Jacobi equations, like MHD and RMHD.

Particular attention has been also devoted to the numeri-
cal method needed to derive primitive variables from the set of
conservative ones. The 5 × 5 system of nonlinear equation is
reduced to just a single equation for the square of the velocity.
This is then solved via a Newton-Raphson iterative root-finding
algorithm, and analytical expressions are provided for the func-
tion whose zeroes are looked for and for its first derivative. This
procedure is extremely efficient and robust, and may be used
in all RMHD codes, regardless of the numerical scheme em-
ployed.

The code is verificated against 1-D shock tube tests and
2-D problems, even in non-Cartesian geometries, showing ac-
curate results and non-oscillatory profiles. The code is very ro-
bust within the limits imposed by the intrinsic numerical pre-
cision, which for multidimensional relativistic flows appear to
be γ ∼ 10−20 (γ > 200 is reached in 1-D calculations) and
β = p/B2 ∼ 10−4−10−3. These limits seem to be common to
all other existing RMHD codes, and are essentially due to the
fact that physical states become undistinguishable in the ultra-
relativistic regime (e.g. all characteristic speeds collapse onto
the speed of light), where even very small errors on the recon-
struction produce fluxes that lead to unphysical states. Typical
situations where the code may fail are strong rarefactions in a
strongly magnetized medium.

Finally, generalized orthogonal curvilinear coordinates are
defined in the code, and presented in the appendix, so our
scheme may be easily extended to include General Relativity
effects with a given metric.
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Appendix A: Orthogonal curvilinear coordinates

The equations for special relativistic MHD in a generalized or-
thogonal curvilinear coordinate system (x1, x2, x3) are obtained
by assuming a (covariant) metric tensor of the form

gαβ = diag
{
−1, h2

1, h
2
2, h

3
3

}
· (A.1)

The first step is to re-define vector and tensor covariant
or contravariant components as ordinary components, then
spatial differential operators must be converted in this new co-
ordinate system. The set of conservative equations in the diver-
genge form, Eq. (8), becomes

∂u
∂t
+

1
h1h2h3

3∑
i=1

∂

∂xi

(
h1h2h3

hi
f i

)
+ g = 0, (A.2)

where u and f i are still those defined in Eqs. (9) and (10), re-
spectively. The source term g contains the derivatives of the
metric elements

g =



0
h12T12 + h13T13 − h21T22 − h31T33

h23T23 + h21T21 − h32T33 − h12T11

h31T31 + h32T32 − h13T11 − h23T22

0


, (A.3)

where Ti j = wtotuiu j−bib j+ptotδi j is the stress tensor and where
we have defined

hi j =
1

hih j

∂h j

∂xi
· (A.4)

Concerning the magnetic evolution equations, since in our CT
scheme we have assumed A as a primary variable, evolved in
time by Eq. (13), the only changes occur in the derivation of
the magnetic field:

Bi =
hi

h1h2h3

∑
jk

εi jk
∂

∂x j
(hkAk), (A.5)

which just expresses B = ∇ × A in generalized orthogonal co-
ordinates.

In the code, the various combinations of the metric ele-
ments are preliminarly calculated and stored on the required
grids. Thus (h1h2h3)−1 and the six hi j terms are defined at grid
points Pi, j,k, h2h3 and its reciprocal are defined at the staggered
grid Pi+1/2, j,k (similarly for h3h1 and h1h2), where the corre-
sponding flux and longitudinal divergence-free magnetic field
component need to be calculated, and finally the hi elements
are stored on the same grids where Ai and Ei are defined, that
is h1 on Pi, j+1/2,k+1/2 and so on. Thus, to obtain the derivatives
in the above expressions, we just need to multiply numerical
fluxes and potential vector components with the corresponding
geometrical terms, and then we may proceed in the usual way.
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